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Topology of the internet

Measurement: exploration using traceroute

S DS DS DS D

TTL = 1

If no answer: *
ICMP filtered for various reasons:

Rate limiting
Time exceeded

. . .
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Topology of the internet

Measurement: exploration using traceroute

S DS DS DS D

TTL = 1

Remark:
one router = several IP addresses

answers with the IP address that sends the packet
⇒ simplified description of the process
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Measurement bias

A very general but largely ignored fact about Internet-related
measurements is that what we can measure in an Internet-like
environment is typically not the same as what we really want to
measure (or what we think we actually measure)

Mathematics and the internet: A source of enormous confusion and
great potential, W. Willinger et al., Notices of the AMS, 2009.
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Problematic

Information collection
A few sources, a lot of destinations:

We know that we don’t see everything
How to get a meaningful view? (→ evaluate bias)

Measured property
The degree distribution, we discussed this property a lot...
Degree distribution of the Internet: heterogeneous, even a
power-law

Pansiot, Grad - 1998

Faloutsos, Faloutsos, Faloutsos - 1999
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Surprising degree distribution observed→ bias?

How to procede?
Measure from a large number of sources
Call to theoretical and experimental studies

Lecture goal: understand and comment research papers
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Volume of information

Barford, Bestavros, Byers, Crovella - On the Marginal Utility of Network Topology

Measurements, 2001

General idea of the article
Use data from measurements (rather than simulations)
Evaluate number of nodes/links seen vs number of
sources/destinations→ unit of the information volume

Interest of using more sources and destinations
→ Does it increase the volume of information?
→ Does it decrease the bias?
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Data

Two datasets

8 sources
1277 destinations
1 traceroute every 30 minutes
approximately 7 months

12 sources
> 300 000 destinations
same measurement method
duration unknown

10/51



Introduction: traceroute measurement
Metrology

Influence of sources and destinations
Bias on degree

Data

Remark about the benefit of repeating measurements
Because of load-balancing, . . .
→ repeating give more information (and more noise too...)
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Methodology

Assess the number of nodes seen as a function of
the number of sources
the number of destinations

s sources, d destinations→s × d possible parameter values

A lot of possibilities. . .

Interpretation?

same thing with destinations
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Problem

nb sources

nb IP seen

3

Number of IPs seen with 3 sources: which 3 sources?
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Example

One source→ set of IPs seen

Example

s1 : {a,b, c,d ,e}
s2 : {a,b, c,d , f}
s3 : {a,b}

s4 : {g,h}
s5 : {i , j , k}
s6 : {a,d}

s1 + s3 + s6 → 5 IP
s1 + s4 + s5 → 10 IP

Depends on how complementary the sources are
no obvious choice
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Greedy strategy

At each step: add the source which adds most information

Example

s1 : {a,b, c,d ,e}
s2 : {a,b, c,d , f}
s3 : {a,b}

s4 : {g,h}
s5 : {i , j , k}
s6 : {a,d}

s1s5s4s2s3s6

Motivation: close to “best” case, without testing all combinations
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Complexity

Complexity of the union of two sets

proportional to size of the smallest
(minimum, depends on the implementation)

Complexity of step 2
compute n − 1 unions

→ (n − 1)× k if all sets are of size k

Complexity of step i

compute n − (i − 1) unions

→ (n − i + 1)× k
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Complexity

At step i

n − (i − 1) unions
→ (n − i + 1)× k

k((n − 1) + (n − 2) + . . .+ 2 + 1) = kn(n−1)
2

O(kn2)

long if large number of sources (n)
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Observations

Convergence of the curve:
the last ones bring nearly no new information

→ authors conclude marginal utility of source addition

to be discussed later...
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Destinations utility

In the ideal case, inverse approach:
Every destination→ set of IPs seen

Greedy strategy is expensive→ random strategy

For one source
At each step:

add randomly a destination

Compare curves for all sources
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Results
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Observation: roughly linear increase
similar benefit for all destinations
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Comparison sources and destinations

Difference between curves
→Why such difference between sources and destinations?

Intuition:
s sources, d destinations ⇐⇒ d sources, s destinations

→ Importance of the strategy used
greedy vs random
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Critical look

Interesting study, but...

Lack of details on
→ disparity between sources
(one source only sees 184 nodes , > 4000 for the largest one)
→ influence of the strategy

Q: is the choice of sources more important than their number?
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Last sources: bring few information
but the greedy strategy induce the shape of the curve

no obvious best strategy...
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Datasets

To get a better understanding: compare different strategies

Ouédraogo, Magnien - Computer Communications, 2011

Data
11 sources
3 000 destinations
100 traceroutes per day
∼ 2 months
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Difference between sources

Number of IPs seen per sources
Vary between:

∼ 16,500
∼ 26,500

→ Every sources are not equivalent
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Influence of sources and destinations

Three different strategies
greedy-max:

add the source which brings the most information
random:

add a random source
greedy-min:

add the source which brings the least information
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Influence of sources and destinations

Greedy strategy 6= maximum possible with k sources

Example

s1 : {a,b, c,d ,e}
s2 : {a,b,e, f}

s3 : {a, c,d ,g}

sources : s1s2s3

s2 + s3 : 7 IP

Representativeness of maximum? (close to “standard” case?)
Cost to compute the maximum?
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Influence of sources and destinations

Other strategies
Max→ max over 1000 random orders
Min→ min over 1000 random orders
Random→ average over 1000 random orders
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Influence of sources and destinations

Example

s1 : {a,b, c,d ,e}
s2 : {a,b, c,d , f}
s3 : {a,b}

s4 : {g,h}
s5 : {i , j , k}
s6 : {i , j}

s3 s4 s6 s5 s2 s1
2 4 6 7 10 11
s5 s6 s2 s4 s3 s1
3 3 7 9 10 11

Min 2 3 6 7 10 11
Max 3 4 7 9 10 11

Average 2.5 3.5 6.5 8 10 11
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Results
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Observations

Every curves ends at point n

because every node discovered

Random max (min) = Greedy max (min) for sources only

because few sources

Greedy max (averaged)

similar qualitative behaviors for sources and destinations

In practice, larger variability with sources

because few sources
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Conclusion

Utility decrease, but not null
Choice of sources might be more important than number
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Exploration bias

Lakhina, Byers, Crovella, Xie - Sampling Biases in IP Topology Measurements, 2003

Principle of the article: simulation-based
Generate artificial graphs→ topology
Simulate traceroutes→ measure
Observe and analyze results

Explore the explicative dimension of modelling
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Implementation - graph models

Basic graph models
Erdős-Rényi
Fixed degree distribution→ configuration model

32/51
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Implementation – traceroute simulation

How to simulate traceroute?
...several possibilities
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Implementation – traceroute simulation

How to simulate traceroute?
...several possibilities

Usual choice
route = shortest path (not true but default choice)

Shortest path
One/every shortest paths?
If one, which one?

33/51
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The authors’ choice

Give a weight to each link (→ weighted graph)
1 + ε, with a random ε� 1

Length of a path: sum of the weights of the links
→Every paths have different weights

0.99 0.98

1.01 0.99
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Computation of the shortest weighted path

BFS not suited for weighted networks

1

1

0.5

0.5

0.5

shortest paths from one node in weighted graph (weights>0)
→ Dijkstra algorithm (not detailed here)

35/51



Introduction: traceroute measurement
Metrology

Influence of sources and destinations
Bias on degree

Our choice: restricted BFS

No weight
Distances computed with a BFS

Storage of the output of the BFS→ table

Value i: father of i
Value root: root itself

0 0 1 4 0 0 5 4
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
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Restiction to destinations

Table initialized at -1

For each destination d : (here : d = 3, 4, 6, 1)
While AR[d] == -1

AR[d] = A[d]
d = A[d]

A
0 0 1 4 0 0 5 4
0 1 2 3 4 5 6 7

AR
0 0 -1 4 0 0 5 -1
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
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Degree computation

Degree of a node in the BFS tree:

• number of times it appears +1
• except for the root : number of times -1

0 0 -1 4 0 0 5 -1
0 1 2 3 4 5 6 7

(boxes with -1: nodes which are not in the BFS tree)
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Several sources

Several sources:
→ one BFS per source

How to compute the degree of the nodes?
mark links as present or absent
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Connectedness

Problem if the graph is not connected...

Several solutions
Choose sources and destinations in the same connected
component
Use only connected graphs
. . .

No ideal solution
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Connectedness

Problem if the graph is not connected...

Authors’ choice:
Restrict to the largest connected component
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Simulations

Two cases under study:

Erdős-Rényi graphs (homogeneous degree)
n = 100 000
m = 750 000 (d◦(G) = 15)
sources: 1, 5, 10
destinations: 1000, chosen randomly

Fixed degree distribution (heterogeneous)
n ∼ 100 000
m ∼ 190 000
power-law, α ∼ 2.1
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Results

Erdős-Rényi graphs
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Graphs with fixed heterogeneous degree
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Observations

Distribution observed 6= real distribution
Erdős-Rényi: qualitative difference
homogeneous appears as heterogeneous
Graphs with fixed degree: quantitative difference
slope, max degree, . . .

Warning:
ER graphs: Maximum degree observed ∼ 30
→impossible to conclude on heterogeneity

44/51

Introduction: traceroute measurement
Metrology

Influence of sources and destinations
Bias on degree

Observations

Distribution observed 6= real distribution
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Conclusion of the study

Observing heterogeneous distrib ; Real heterogeneous distrib

No conclusion on the real distribution
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Discussion (1/2)

Important result
From a theoretical point of view
Need to be careful about conclusions in practice

What conclusions can we draw from this?

Observed distribution heterogeneous
→ Real distribution homogeneous?
→ Real distribution heterogeneous?
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Discussion (2/2)

Case of ER graphs
Maximal degree observed:

close to average degree of the graph.

Practically, maximum degree observed > 1000
→ random graph with average degree = 1000?

→real distribution probably heterogeneous...
Need more studies
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Sources of the bias

Hyp: Bias in the node sample?

For each node: compare the degree observed to its real degree
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Bias sources

Hyp: Bias in the link sample?

degree observed vs original degree
With 1 source
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Bias sources

Link visibility as a function of their distance to the source
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the less are its chances to be seen
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Bias sources
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Given sample→ bias?
Given a sample (but not the original graph),

can we know if there is some bias?

Measure the probability to observe both
degree d and distance h
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The most distant are the nodes, the weaker is the degree
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