Networks Structure and Dynamics 11. Internet topology metrology

Maximilien Danisch, Marwan Ghanem, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

December 18th 2018

Introduction: traceroute measurement
Metrology

- Introduction: traceroute measurement
- 2 Metrology
 - Influence of sources and destinations
 - Bias on degree

Introduction: traceroute measurement Metrology

Outline

- Introduction: traceroute measurement
- Metrology
 - Influence of sources and destinations
 - Bias on degree

Introduction: traceroute measurement

Metrology

Topology of the internet

 $\label{eq:measurement:exploration} \mbox{ Measurement: exploration using $\tt traceroute}$

Principle: packets with same destination and increasing TTL

GW-E

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement

Metrology

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement

Metrology

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

W-E

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement
Metrology

Topology of the internet

Measurement: exploration using traceroute

Principle: packets with same destination and increasing TTL

Introduction: traceroute measurement

Metrology

Topology of the internet

Measurement: exploration using traceroute

If no answer: *
ICMP filtered for various reasons:
Rate limiting
Time exceeded

. . .

Topology of the internet

Measurement: exploration using traceroute

Remark:

one router = several IP addresses
answers with the IP address that sends the packet
⇒ simplified description of the process

Introduction: traceroute measurement

Measurement bias

A very general but largely ignored fact about Internet-related measurements is that what we can measure in an Internet-like environment is typically not the same as what we really want to measure (or what we think we actually measure)

Mathematics and the internet: A source of enormous confusion and great potential, W. Willinger et al., Notices of the AMS, 2009.

Introduction: traceroute measurement

Problematic

Information collection

A few sources, a lot of destinations:

- We know that we don't see everything
- How to get a meaningful view? (→ evaluate bias)

Measured property

The degree distribution, we discussed this property a lot... Degree distribution of the Internet: heterogeneous, even a power-law

Pansiot. Grad - 1998

Faloutsos, Faloutsos - 1999

Introduction: traceroute measurement
Metrology

Surprising degree distribution observed → bias?

How to procede?

- Measure from a large number of sources
- Call to theoretical and experimental studies

Lecture goal: understand and comment research papers

6/51

Surprising degree distribution observed → bias?

How to procede?

• Measure from a large number of sources
• Call to theoretical and experimental studies

Lecture goal: understand and comment research papers

Outline

Influence of sources and destinations
Bias on degree

Influence of sources and destinations
Bias on degree

Influence of sources and destinations
Bias on degree

Introduction: traceroute measurement Metrology Influence of sources and destinations
Bias on degree

Volume of information

Barford, Bestavros, Byers, Crovella - On the Marginal Utility of Network Topology Measurements. 2001

General idea of the article

- Use data from measurements (rather than simulations)
- Evaluate number of nodes/links seen vs number of sources/destinations → unit of the information volume

Interest of using more sources and destinations

- \rightarrow Does it increase the volume of information?
- \rightarrow Does it decrease the bias?

Introduction: traceroute measurement
Metrology

Influence of sources and destinations

Data

Two datasets

- 8 sources
- 1277 destinations
- 1 traceroute every 30 minutes
- approximately 7 months
- 12 sources
- > 300 000 destinations
- same measurement method
- duration unknown

Data

Remark about the benefit of repeating measurements

Because of load-balancing, ...

→ repeating give more information (and more noise too...)

Influence of sources and destinations Bias on degree

Methodology

Assess the number of nodes seen as a function of

- the number of sources
- the number of destinations

s sources, d destinations \rightarrow s \times d possible parameter values

A lot of possibilities...

Interpretation?

Influence of sources and destinations

Influence of sources and destinations

Methodology

What do we want?

nb IP seen nb sources

same thing with destinations

Methodology

What do we want?

Problem

Number of IPs seen with 3 sources: which 3 sources?

Influence of sources and destinations Bias on degree

Example

One source → set of IPs seen

Example

 $s_1: \{a, b, c, d, e\}$ $egin{array}{lll} s_1 : \{a,b,c,d,e\} & s_4 : \{g,h\} \ s_2 : \{a,b,c,d,f\} & s_5 : \{i,j,k\} \ s_3 : \{a,b\} & s_6 : \{a,d\} \ \end{array}$

 $s_4:\{g,h\}$

Introduction: traceroute measurement

Influence of sources and destinations

Example

One source → set of IPs seen

Example

 $egin{array}{lll} s_1 : \{a,b,c,d,e\} & s_4 : \{g,h\} \ s_2 : \{a,b,c,d,f\} & s_5 : \{i,j,k\} \ s_3 : \{a,b\} & s_6 : \{a,d\} \ \end{array}$

$$s_1 + s_3 + s_6 \rightarrow 5 \text{ IP}$$

 $s_1 + s_4 + s_5 \rightarrow 10 \text{ IP}$

Depends on how complementary the sources are no obvious choice

Introduction: traceroute measurement

Influence of sources and destinations

Greedy strategy

At each step: add the source which adds most information

Example

 $s_1 : \{a, b, c, d, e\}$ $s_4 : \{g, h\}$

 $s_2: \{a, b, c, d, f\}$ $s_5: \{i, j, k\}$

 $s_3 : \{a, b\}$

 $s_6: \{a, d\}$

Greedy strategy

At each step: add the source which adds most information

Example

 $s_4:\{g,h\}$ $s_1 : \{a, b, c, d, e\}$ $s_2: \{a, b, c, d, f\}$ $s_5 : \{i, j, k\}$ $s_3 : \{a, b\}$ $s_6: \{a, d\}$

1 source: *s*₁

Influence of sources and destinations Bias on degree

Greedy strategy

At each step: add the source which adds most information

Example

 $s_1 : \{a, b, c, d, e\}$ $s_4:\{g,h\}$ $s_2: \{a, b, c, d, f\}$ $s_5 : \{i, j, k\}$ $s_3 : \{a, b\}$ $s_6: \{a, d\}$

2 sources: $s_1 s_5$

Introduction: traceroute measurement

Influence of sources and destinations

Greedy strategy

At each step: add the source which adds most information

Example

 $s_1: \{a, b, c, d, e\}$ $s_4:\{g,h\}$ $s_2: \{a, b, c, d, f\}$ $s_5 : \{i, j, k\}$ $s_3 : \{a, b\}$ $s_6: \{a, d\}$

3 sources: $s_1 s_5 s_4$

Influence of sources and destinations

Greedy strategy

At each step: add the source which adds most information

Example

 $s_1 : \{a, b, c, d, e\}$ $s_4:\{g,h\}$ $s_2: \{a, b, c, d, f\}$ $s_5: \{i, j, k\}$ $s_3 : \{a, b\}$ $s_6: \{a, d\}$

4 sources: $s_1 s_5 s_4 s_2$

Influence of sources and destinations

Bias on degree

Greedy strategy

At each step: add the source which adds most information

Example

 $egin{array}{lll} s_1 : \{a,b,c,d,e\} & s_4 : \{g,h\} \ s_2 : \{a,b,c,d,f\} & s_5 : \{i,j,k\} \ s_3 : \{a,b\} & s_6 : \{a,d\} \ \end{array}$

5 sources: *s*₁*s*₅*s*₄*s*₂*s*₃

Influence of sources and destinations Bias on degree

Greedy strategy

At each step: add the source which adds most information

Example

 $egin{array}{lll} s_1 &: \{a,b,c,d,e\} & s_4 &: \{g,h\} \ s_2 &: \{a,b,c,d,f\} & s_5 &: \{i,j,k\} \ s_3 &: \{a,b\} & s_6 &: \{a,d\} \ \end{array}$

6 sources: *S*₁*S*₅*S*₄*S*₂*S*₃*S*₆

Introduction: traceroute measurement

Influence of sources and destinations

Greedy strategy

At each step: add the source which adds most information

Example

 $egin{array}{lll} s_1 : \{a,b,c,d,e\} & s_4 : \{g,h\} \ s_2 : \{a,b,c,d,f\} & s_5 : \{i,j,k\} \ s_3 : \{a,b\} & s_6 : \{a,d\} \ \end{array}$

sources: $s_1 s_5 s_4 s_2 s_3 s_6$

Motivation: close to "best" case, without testing all combinations

Introduction: traceroute measurement

Influence of sources and destinations

Complexity

Complexity of the union of two sets

Complexity of step 2

compute n-1 unions

Complexity of step i

compute n - (i - 1) unions

Complexity

Complexity of the union of two sets

proportional to size of the smallest (minimum, depends on the implementation)

Complexity of step 2

compute n-1 unions

Complexity of step i

compute n - (i - 1) unions

Complexity

Complexity of the union of two sets

proportional to size of the smallest (minimum, depends on the implementation)

Complexity of step 2

compute n-1 unions $\rightarrow (n-1) \times k$ if all sets are of size k

Complexity of step i

compute n - (i - 1) unions

Introduction: traceroute measurement

Metrology

Influence of sources and destinations

Introduction: traceroute measurement

Influence of sources and destinations
Bias on degree

Complexity

Complexity of the union of two sets

proportional to size of the smallest (minimum, depends on the implementation)

Complexity of step 2

compute n-1 unions $\rightarrow (n-1) \times k$ if all sets are of size k

Complexity of step *i*

compute
$$n - (i - 1)$$
 unions $\rightarrow (n - i + 1) \times k$

Complexity

$$n-(i-1)$$
 unions $\rightarrow (n-i+1) \times k$

$$k((n-1)+(n-2)+\ldots+2+1)=\frac{kn(n-1)}{2}$$

 $\mathcal{O}(kn^2)$

long if large number of sources (n)

.....

Me

Introduction: traceroute measurement

Influence of sources and destinations Bias on degree

Observations

Convergence of the curve:

the last ones bring nearly no new information \rightarrow authors conclude marginal utility of source addition

to be discussed later...

Introduction: traceroute measureme
Metrolog

Influence of sources and destinations
Bias on degree

Destinations utility

In the ideal case, inverse approach: Every destination \rightarrow set of IPs seen

Greedy strategy is expensive → random strategy

For one source

At each step:

add randomly a destination

Compare curves for all sources

==//-

Influence of sources and destinations
Bias on degree

Comparison sources and destinations

Difference between curves

→ Why such difference between sources and destinations?

Intuition:

s sources, d destinations $\iff d$ sources, s destinations

Importance of the strategy used greedy vs random

Introduction: traceroute measurement

Influence of sources and destinations
Bias on degree

Comparison sources and destinations

Difference between curves

 \rightarrow Why such difference between sources and destinations?

Intuition:

s sources, d destinations \iff d sources, s destinations

→ Importance of the strategy used greedy vs random Introduction: traceroute measureme Metrological Influence of sources and destinations

Comparison sources and destinations

Difference between curves

 \rightarrow Why such difference between sources and destinations?

Intuition:

s sources, d destinations $\iff d$ sources, s destinations

 $\begin{tabular}{ll} \rightarrow & \text{Importance of the strategy used} \\ & \text{greedy vs random} \\ \end{tabular}$

20/51

Metrology

Influence of sources and destinations Bias on degree

Critical look

Interesting study, but...

Lack of details on

 \rightarrow disparity between sources (one source only sees 184 nodes, > 4000 for the largest one) \rightarrow influence of the **strategy**

Q: is the choice of sources more important than their number?

Influence of sources and destinations

Datasets

To get a better understanding: compare different strategies

Ouédraogo, Magnien - Computer Communications, 2011

Data

- 11 sources
- 3 000 destinations
- 100 traceroutes per day
- $\bullet \sim$ 2 months

Influence of sources and destinations

Difference between sources

Number of IPs seen per sources

Vary between:

- ∼ 16,500
- ∼ 26,500

→ Every sources are not equivalent

Influence of sources and destinations

Three different strategies

greedy-max:

add the source which brings the most information

• random:

add a random source

greedy-min:

add the source which brings the least information

Influence of sources and destinations Bias on degree

Influence of sources and destinations

Greedy strategy \neq maximum possible with k sources

Example

 $s_1: \{a, b, c, d, e\}$ $s_2: \{a, b, e, f\}$

 $s_3: \{a, c, d, g\}$

Influence of sources and destinations

Influence of sources and destinations

Greedy strategy \neq maximum possible with k sources

Example

 $s_1 : \{a, b, c, d, e\}$ $s_2 : \{a, b, e, f\}$

 $s_3: \{a, c, d, g\}$

1 sources : s₁

Influence of sources and destinations

Influence of sources and destinations

Greedy strategy \neq maximum possible with k sources

Example

 $s_1 : \{a, b, c, d, e\}$ $s_2: \{a, b, e, f\}$

 $s_3: \{a, c, d, g\}$

2 sources : $s_1 s_2$

Influence of sources and destinations
Bias on degree

Influence of sources and destinations

Greedy strategy \neq maximum possible with k sources

Example

 $s_1 : \{a, b, c, d, e\}$

 $s_3: \{a, c, d, g\}$

 $s_2 : \{a, b, e, f\}$

3 sources : $s_1 s_2 s_3$

Introduction: traceroute measuremen

Influence of sources and destinations
Bias on degree

Influence of sources and destinations

Greedy strategy \neq maximum possible with k sources

Example

 $s_1 : \{a, b, c, d, e\}$

 $s_3 : \{a, c, d, g\}$

 $s_2 : \{a, b, e, f\}$

3 sources : $s_1 s_2 s_3$

 $s_2 + s_3 : 7 \text{ IP}$

Representativeness of maximum? (close to "standard" case?)

Cost to compute the maximum?

Influence of sources and destinations

Bias on degree

Influence of sources and destinations

Influence of sources and destinations

Introduction: traceroute measurement

Other strategies

ullet Max ightarrow max over 1000 random orders

Min → min over 1000 random orders

 $\bullet \ \, \text{Random} \rightarrow \text{average over 1000 random orders}$

 $s_1 : \{a, b, c, d, e\}$

Example

 $s_4 : \{g, h\}$

 $s_2:\{a,b,c,d,f\}$

 $s_5:\{i,j,k\}$

Influence of sources and destinations

 $s_3:\{a,b\}$

 $s_6: \{i, j\}$

OTA II-

Introduction: traceroute measurement Metrology Influence of sources and destinations

Observations

- Every curves ends at point n
- Random max (min) = Greedy max (min) for sources only
- Greedy max (averaged)
- In practice, larger variability with sources

Introduction: traceroute measurement Metrological

Influence of sources and destinations

Observations

- Every curves ends at point n because every node discovered
- Random max (min) = Greedy max (min) for sources only because few sources
- Greedy max (averaged) similar qualitative behaviors for sources and destinations
- In practice, larger variability with sources because few sources

29/51

Tonclusion

Conclusion

Utility decrease, but not null
Choice of sources might be more important than number

Influence of sources and destinations
Bias on degree

Exploration bias

Lakhina, Byers, Crovella, Xie - Sampling Biases in IP Topology Measurements, 2003

Principle of the article: simulation-based

Generate artificial graphs → topology
Simulate traceroutes → measure
Observe and analyze results

Explore the explicative dimension of modelling

Implementation - graph models

Basic graph models

■ Erdős-Rényi

■ Fixed degree distribution → configuration model

Implementation – traceroute simulation

How to simulate traceroute?
....several possibilities

Influence of sources and destinations

Bias on degree

Implementation – traceroute simulation

How to simulate traceroute? ...several possibilities

Usual choice

• route = shortest path (not true but default choice)

Shortest path

- One/every shortest paths?
- If one, which one?

Introduction: traceroute measuremen

Influence of sources and destinations Bias on degree

The authors' choice

Give a weight to each link (\rightarrow weighted graph)

 $1 + \epsilon$, with a random $\epsilon \ll 1$

Length of a path: sum of the weights of the links

→Every paths have different weights

33/51

3

Introduction: traceroute measuremen

Metrologi

Influence of sources and destinations

Bias on degree

The authors' choice

Give a weight to each link (\rightarrow weighted graph) $1 + \epsilon$, with a random $\epsilon \ll 1$

Length of a path: sum of the weights of the links \rightarrow Every paths have different weights

Introduction: traceroute measurem

Metrol

Influence of sources and destinations
Bias on degree

Computation of the shortest weighted path

BFS not suited for weighted networks

shortest paths from one node in weighted graph (weights>0)

→ Dijkstra algorithm (not detailed here)

94/5

Influence of sources and destinations
Bias on degree

Our choice: restricted BFS

 $\begin{tabular}{ll} No weight \\ Distances computed with a BFS \\ Storage of the output of the BFS \rightarrow table \\ \end{tabular}$

Value i: father of i Value root: root itself

51

luction: traceroute measurement Metrology Influence of sources and destinations Bias on degree

Restiction to destinations

Table initialized at -1

For each destination d: (here : d = 3, 4, 6, 1)

- While AR [d] == −1
 - AR[d] = A[d]
 - d = A[d]

37/

Introduction: traceroute measurement Metrology Influence of sources and destinations Bias on degree

Degree computation

Degree of a node in the BFS tree:

Introduction: traceroute measurement

Metrology

Influence of sources and destinations Bias on degree

Degree computation

Degree of a node in the BFS tree:

- number of times it appears +1
- except for the root : number of times -1

(boxes with -1: nodes which are not in the BFS tree)

38/51

Influence of sources and destinations Bias on degree Several sources Several sources: \rightarrow one BFS per source

How to compute the degree of the nodes?

mark links as present or absent

Influence of sources and destinations Bias on degree

Connectedness

Problem if the graph is not connected...

Several solutions

- Choose sources and destinations in the same connected component
- Use only connected graphs

No ideal solution

Introduction: traceroute measurement

Influence of sources and destinations

Introduction: traceroute measurement

Influence of sources and destinations

Connectedness

Problem if the graph is not connected...

Authors' choice:

Restrict to the largest connected component

Simulations

Two cases under study:

Erdős-Rényi graphs (homogeneous degree)

- n = 100000
- $m = 750\,000 \, (d^{\circ}(G) = 15)$
- sources: 1, 5, 10
- destinations: 1000, chosen randomly

Fixed degree distribution (heterogeneous)

- $n \sim 100\,000$
- $m \sim 190000$
- power-law, $\alpha \sim$ 2.1

Introduction: traceroute measurement **Metrology** Influence of sources and destinations Bias on degree

Observations

- Distribution observed ≠ real distribution
- Erdős-Rényi: qualitative difference homogeneous appears as heterogeneous
- Graphs with fixed degree: quantitative difference slope, max degree, ...

Warning:

ER graphs: Maximum degree observed ~ 30

impossible to conclude on heterogeneity

Introduction: traceroute measurement

Metrology

Influence of sources and destinations Bias on degree

Observations

- Distribution observed ≠ real distribution
- Erdős-Rényi: qualitative difference homogeneous appears as heterogeneous
- Graphs with fixed degree: quantitative difference slope, max degree, ...

Warning:

ER graphs: Maximum degree observed ~ 30 →impossible to conclude on heterogeneity

44/5

Conclusion of the study

Observing heterogeneous distrib

→ Real heterogeneous distrib

No conclusion on the real distribution

Influence of sources and destinations Bias on degree

Discussion (1/2)

Important result

- From a theoretical point of view
- Need to be careful about conclusions in practice

What conclusions can we draw from this?

Observed distribution heterogeneous

- \rightarrow Real distribution homogeneous?
- → Real distribution heterogeneous?

Introduction: traceroute measurement

Influence of sources and destinations

Discussion (2/2)

Case of ER graphs

Introduction: traceroute measurement

Maximal degree observed:

Influence of sources and destinations

Discussion (2/2)

Case of ER graphs

Maximal degree observed: close to average degree of the graph.

Practically, maximum degree observed > 1000 → random graph with average degree = 1000?

→real distribution probably heterogeneous... Need more studies

Given sample → bias?

Given a sample (but not the original graph), can we know if there is some bias?

Introduction: traceroute measurement

Influence of sources and destinations